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A density functional based first principles study of the metal to ligand charge-transfer (MLCT) states of [Ru- 
(bpy)312+ is presented. The method used in this study includes first-order electrostatic multiplet splitting as well 
as spin-orbit interaction. The results obtained show that there is an important mixing of the excited singlet and 
triplet states. These first principles results are in good overall agreement with the observed absorption spectra, with 
respect to both the spread of the excitation energies and the positions of the strong, unambiguously assigned peaks. 
Our calculation finds the lowest excited states to be virtually degenerate A1 and E spin-orbit components of the 
(dr:al) - (r*:az) 3A2 state, the former lying a few 10-cm-1 units below the latter one. The next excited triplet, 
i.e. (dr:e) - (r*:az) 3E, arises only roughly 1500 cm-I above the 3A2. 

1. Introduction 

The electronic structure of [ R ~ ( b p y ) ~ ] ~ +  (bpy = 2,2'-bipyridine) 
has been investigated for nearly two decades, but the assignment 
of the lowest excited states remains contradictory.1-5 Many results 
were explained by a localized model for these excited states, placing 
the electron on a single bpy ligand.Zq4-6J On the other hand from 
the results of investigations of single crystals, it was possible to 
deduce that the lowest two excited states of the [Ru(bpy)312+ 
chromophore are of degenerate E character in the relevant point 
group O3.*-l2 Despite their importance, an accurate quantum- 
mechanical description of the electronic fine structure of the 
MLCT excited states has not yet been undertaken. In particular, 
no prediction of the energetical ordering of the MLCT states 
based on first principle calculation is available. The reason for 
this is twofold: (i) The first principle calculation of Hartree- 
Fock (+CI) or density functional (DF) type of excited states of 
such a large molecule is not straightforward and (ii) the multiplet 
structure is rather complex. As much as 6 AI, 6 Az, and 12 E 
components are expected within the MLCT manifold, some of 
them being only separated by a few wavenumbers. 

Nevertheless we have recently demonstrated that such calcula- 
tions are feasible,ljJ4 and even though the experimental spacing 
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between two excited states (a few cm-I) is far below the accuracy 
(several hundred cm-l) of our method, we do believe that such 
a calculation is useful to the scientific community. Indeed, the 
result of such a calculation may be an important aid to 
spectroscopists for band assignments and for the elaboration of 
refined models. 

In the present communication an electronic structural model 
that includes both DF calculation of the electrostatic MLCT 
states and spin-orbit coupling is presented. Several workers, 
including ourselves, have attempted in the past with varying results 
to describe the MLCT bands of the title c o m p o ~ n d . I ~ - ~ ~  Among 
those, there are only 2 communications which do include an 
extensive fine-structure calculation of the excited MLCT states. 
The first one is due to Kober and Meye+ and the second one 
which is very similar to the first one is due to Ferguson and 
Herren.15b But the models used by those two groups of authors 
is quite approximate; e.g. the singlet-triplet splitting is described 
by one single parameter and does not include any calculated 
energies. The model we present here is different in this respect 
since only the value of the spin-orbit coupling constant of Ru is 
not calculated from first principles. 

2. Computational Methods 
2.1 Density FUIIC~~OM~ Calculations. The density functional calcula- 

tions reported in this paper have been carried out with the Amsterdam 
density functional (ADF) program The computational 
scheme is characterized by a density fitting procedure to obtain the 
Coulomb potential20 and by elaborate 3D numerical integration tech- 
niques2'J2 for the evaluation of the Hamiltonian matrix elements, including 
those of the exchange-correlation potential. The Vosko-Wilk-Nusair 
parameterizati~n~~ of the electron gas data has been used for the exchange- 
correlation energy and potential. The molecular orbitals were expanded 
in an uncontracted double-c STO basis set for the C, N, and H atoms, 
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with one 2p set added on H. For Ru a triple-3 4d and double-3 4s, 4p, 
and 5s basis was used, augmented with one 5p STO. The cores (C, N, 
Is; Ru, 1s-3d) have been kept frozen. The implementation allows one 
to build up the molecule from constituting fragments, which has the 
advantage that MOs and Mulliken populations (including orbital 
compositions) may be expressed in terms of a fragment orbital basis. In 
the present case both the natural bipyridine fragments and the Ru atom 
have been used as well as, for reasons to be discussed below, the complete 
[Ru(bpy)312+ in a specific self-consistently converged electronic con- 
figuration. 

The geometry of [Ru(bpy)3I2+ (D3 symmetry) was taken from the 
X-ray diffraction study of Rillema, Jones, and Leyy.24 All thecalculations, 
Le. both on the ground state and the excited states, were carried out with 
this geometry. This is justified since excitations to MLCT states do not 
exhibit any structural relaxation.I2 

The calculation of multiplet energies (see next section) requires the 
energies of excited determinants, e.g. (occupied spin-orbital no. i )  - 
(empty spin-orbital no. j), to be computed. If either of the two orbitals 
i or j belongs to a degenerate set of E symmetry in the D3 point group, 
the excited determinant will yield an electron density that does not have 
AI symmetry in D3. In order to calculate the DF energy corresponding 
to that electron density it is necessary to lower the symmetry to a point 
group in which the E irrep of D3 splits, so that the electron density of the 
excited determinant will be A1 in the lower symmetry. The appropriate 
point group in our case is C2. If we use a complete [Ru( bpy)@+ molecule 
calculated in D3 symmetry as a ‘fragment” for a calculation in C2 
symmetry, the calculation immediately converges and the eignevectors, 
expressed in the D3 M O s  as basis functions, do not show any mixing. The 
identification of the C2 eigenvectors in terms of D3 MO’s is then readily 
made, yielding a direct mapping of the excited D3 determinant on the 
equivalent C2 determinant. The calculation of the energy of an ( i )  - 
(j) determinant now proceeds through the following steps. Consider e.g. 
the excitation energy [(dr:e-l)a] - [(x*:az)a]. First we calculate self- 
consistently the spin-restricted configuration (dx:e)3(r*:a# in D3 
symmetry. Next we make the correspondence between D3 and C2 
eigenvectors as described above. The energy difference of e.g. [ ( d ~ : e - 2 ) ~  
(dr:e-l)B (r*:az)a] with the spin-restricted excited configuration is then 
obtained in a one-cycle calculation in C2 symmetry, using the previous 
D3 excited configuration as “fragment” and determining the required 
orbital occupations from the previously obtained correspondence between 
C2 and D3 eigenvectors. In this procedure, which avoids any convergence 
problem due to close-lying partially occupied orbitals, the relatively large 
energetic (exchange) effect due to theunpaired spins is taken into account, 
but the orbital relaxation effects (spin-polarization) in the spin-unrestricted 
state are neglected. In fact, the effect of relaxation is very small in this 
extended system. This was checked in a few test calculations where the 
spin-unrestricted configurations were converged. The energetic effects 
of the orbital relaxation have been shown to be very small indeed (cf. 
Table 5, footnote 2). 

2.2 Multiplet Structure. The calculation of the multiplet splittings in 
density functional (DF) theory has been discussed earlier by Ziegler, 
Rauk, and Baerends.2s Following their results, it is possible to replace 
the energy of a single determinant by the corresponding statistical energy 
as obtained in DF theory. In the case of symmetrical molecules with 
degenerate orbitals, the individual multiplet states arising from an open- 
shell configuration can, in general, not be expressed by a single 
determinant. That is, DF calculations do not yield multiplet energies 
directly. According to the aforementioned it is possible to write 
the energy of a multiplet arising from a given configuration as a weighted 
sum of single-determinantal energies; one may then obtain the first-order 
multiplet splittings as solution of a system of M linear equations with N 
unknowns, whereM2 N.26 However, itispossible, byexploitingsymmetry 
to the largest possible extent, to reduce the number of required 
determinantal energies and thus keepcomputational effort to a minimum. 
A system of computer programs working on both mainframe and personal 
computers has been developed carrying out for any desired point group 
the required group theoretical manipulations. It should be pointed out 
at this place that this method will work for any symmetry point group. 
However, the higher the molecular symmetry is, the larger will be the 
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benefit. At the limit of no symmetry the method will reduce to the 
calculation of as many excited configuration as there are excited states 
considered. 

The full details of the method will be published elsewhere,26 and only 
a short outline of it follows here. The method consists essentially of 
making maximum use of the relations that exist between the energies of 
the determinants of a configuration by symmetry. We will expand those 
symmetry relations using the traditional approach of writing the energy 
as the expectation value of the exact Hamiltonian for the determinants, 
Le. using the familiar energy expressions in terms of J and K integrals. 
Exactly the same symmetry relations should exist for the determinantal 
DFT energies. Approximate density functionals may be deficient in this 
respect. The small deviations do not concern us here, although it should 
be noted that strictly obeying the symmetry relations is a useful criterion 
for judging and constructing approximate density functionals. We stress 
that the following discussion in terms of J and K integrals and reduced 
electrostatic matrix elements, as well as the corresponding information 
in the tables, is only meant to make clear the symmetry relations. The 
actual energies have been obtained with the above mentioned density 
functionals, and the described method is essentially a symmetry-based 
generalization of the procedure by Ziegler, Rauk, and Baerends.25 

Consider the multiplet wave functions 

arising from a given configuration OL are easily obtained by vector coupling 
as 

Ir 

where F is the label of the irreducible representation of the space part 
of the wave function, mr refers to its component in case of degeneracy, 
S is the spin part of the wave function with component ms in case of spin 
multiplicity larger than 1, &,, = I X I X ~ X ~ . . . I ,  is a single-determinantal wave 
function of spin-orbitals XI, x2, x3, ..., and C,,, is an orthogonal square 
matrix of symmetry coefficients. Let us note that DF or Hartrcs-Fock 
calculations provide directly the energies associated with $,,, which may 
be interpreted as barycenters of the various energies resulting from the 
states generated by the corresponding configuration. On the other hand, 
this energy E(&@) can also be obtained from Slater’s rules for a single 
determinant as a sum of Coulombic and exchange integrals (ignoring the 
constant one-electron part for the determinants of a single configuration): 

F;I(x,xi4x,x,) < - (x,xjx,x,)l (3)  

GI2 = 1b12 

Following e.g. Griffith?’ these two-electron integrals can in turn be 
exprcssed in a limited number of reduced electrostatic matrix elements 
as follows. Using the spherical harmonic addition theorem for expansion 
of l/r12 and symmetry adapting Ym,,,(Bl,cpl) and Y/,,,(B2,c~r) to the 
irreducible representations of the point group, one obtains 

(4) 

where f and cp denote irreducible representations and components 
respectivelyandg,feareone-electron functions. Thesumoverienumeratcs 
the Occurrence of irrep f and is in principle infinite since the sum over 
(I,m) in the expansion of l/rl2 is, and each irrep f keeps occurring when 
the sum over (I,m) is continued. Considering a specific two-electron 
integral 

(27) Griftith, J. S. The Theory of Tronsition Metol Ions; Cambridge 
University Press: Cambridge, U.K., 1961. 
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where a-d denote irreps and a-6 corresponding components, one obtains, 
by first expanding 1/r12 as above and next vector coupling the orbitals 
a and c belonging to electron 1 and the orbitals b and d belonging to 
electron 2,2* 

Here (alk&) is a one-electron reduced matrix element of the one-electron 
operator gfO(l) with the irreps o(1) and c(1). The coupling coefficients 
(Griffith's V-coefficients) are the same for all values of i, and so the sum 
over i on the right-hand side can be considered as a single reduced 
electrostatic matrix element: 

ThereducedmatrixelementsRarenonzeroonlyif both thedirect products 
of a and c and of b and d contain f Moreover if a = c or b = d, f is 
restricted to the symmetrized square. In the case of e.g. an octahedral 
ligand field, within the d-manifold, there are exactly 10 different R's as 
pointed out by Griffith in ref 27. The determinantal energies E(&,) are 
related to Coulomb and exchange integrals (cf. eq 3) which are in turn 
related through eq 5 to the reduced matrix elements R, and as many DF 
calculations for determinantal energies E(&) are required as there are 
R matrix elements in order to solve for the R's. The state energies we 
seek are obtained as 

and may thus be expressed in terms of two-electron integrals, which 
in turn are expressed in terms of the minimal number of reduced 
electrostatic matrix elements or, if preferred, in terms of the minimal 
number of one-determinantal energies E(+,,). 

Unfortunately this procedure does not necessarily yield all R's. In 
principle theone-determinantal energies only allow one toobtain Coulomb 
(iibj) and exchange (ijlij) contributions, Le. first-order electrostatic 
interactions contributing to the diagonal term (cf. eq 3 for the notation; 
i and j refer to MO indices). Second-order, off diagonal, contributions 
depend upon (ijlkl) elements which are neither of Coulomb nor of exchange 
type and which can therefore not be obtained from the single-determinant 
energies E(@,,). Thus, in cases where second-order electrostaticinteraction 
is important, the off-diagonal two-electron integrals have to be calculated 
explicitly from the SCF wave functions or approximated by appropriate 
model calculations. The calculation of such interaction matrix elements 
in DFT may be useful but at  present lacks firm theoretical foundation. 

As an illustration of this method, let us consider e.g. the ligand field 
states of the configuration e2, of an octahedral d2 complex. The con- 
figuration e2generates the threestates: 'AI, 3A2, 'E. Our scheme induces 
the calculation of only two excited single determinantals within the six 
possible ones. The four remaining single determinants are redundant, 
and their energies are expressible as linear combinations of the two former 
ones. In the example considered, two nonredundant single determinants 
are e.g. 1e:e;l and lete:l. Each of them has a different energy and needs 
a separate DF calculation. The following multiplet splittings are thus 
obtained: 

,!?('A1) = 4/3E(lefe;) - 1/3E(le:e:() 

where 0 and e refers to components of the irreducible representation e. 
We apply now this method to the calculation of the MLCT multiplet 

structure of the title compound. The relevant frontier orbitals involved 

* 
- - n e  

* 
7~ a2 

Figure 1. Frontier orbitals of [Ru(bpy)312+ 

--a: dx:al+x':a2 

A2 

Figure 2. MLCT states of [Ru(bpy)3l2+. 

in the MLCT states are depicted in Figure 1. The ground state is ( d ~ : e ) ~  
(dr:a1)2 'AI. When all singly excited states within this manifold are 
considered, our procedure yields the following nonredundant determinantal 
excitations to be calculated in an individual DF calculation according to 
the method described in section 2.1: 

el = excitation energy of (dx:al)a+(x*:ap)a 
e2 = excitation energy of (dx:e-l)a+(x':ap)p 
c3 = excitation energy of (dx:al)a+(x*:ap)P 
c5 = excitation energy of (dx:e-l)a+(x*:e-2)a 
e6 = excitation energy of (dx:e-1 )a+(x*:e-l )p 
€7 = excitation energy of (dx:al)a+(x*:e-l)a 
e8 = excitation energy of (dn:e-l)a+(x':ap)a 
Q = excitation energy of (dx:e-l)a+(x*:e-2)P 
e10 = excitation energy of (dx:e-l)a+(x*:e-l)a 
cll = excitation energy of (dx:al)a+(x*:e-l)f3 

The relation between these excitation energies and the first-order state 
~~ 

(28) Daul, C. J .  Chim. Phys. 1989,86, 703. 
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Table 1. First-Order Multiplet Energies Expressed in Terms of Determinantal Excitation Energies and Two-Electron Electrostatic Integrals 
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state single determinant energy energy (electrostatic 2-electron integrals)" 
(dr:al) - (**:a,) lA2 
(dr:al) - (**:a,) 3A2 €3 
(dr:al) - (r*:e) 'E 
(dr:al) - (**:e) 3E €11 
(dr:e) - (r*:a2) 'E 
(dr:e) - (r*:a,) 3E €2 
(dr:e) - (r*:e) 'A1 
(dr:e) - (r*:e) 'A1 

(dr:e) - (r*:e) 'Az 
(dr:e) - (**:e) lE (4r5 - - e + 4e10)/6 
(dr:e) - (r*:e) 3E 

2t1- e3 

2C.I - el I 

2€8 - €2 

(A5 - 1 le6 + 9 + 2Oe10)/6 
1.5C6 - 0.59 

-0.5% + 1.59 

0.5% + 0 . 5 ~  

A€ - JIM + J.112 + Kald 
A€ - JIM + J11.2 - Kn1.2 
A€ - J i ln l  + JEIC + Kale 
Ae - Ja1.1 + Jnlc - Kale 
Ac + 35,~ - 0.5Ju - 2.550~ 
Ae + 350.2 - 0.5Jaj - 2.5J0, - 2K,z 
A€ - 0.5Joj - 2.5J0, - 0.5.7~ + 2.5Jh + 3Kw - 3Ked - 2(8e'l1) 
A€ - 0.5Jaj - 2.550, + 0.5Jw + 2.5Jed - & - Ked 

Ae - 0.5Joj - 2.5Ja + 2.5Jw + 0.5Jed - Kw - KO< 
A€-  0 . 5 J ~ -  2.550~ + 1.5Jw + 1 . 5 J ~ -  Kw + Ked - 2(8e'l~W) 
A€ - 0.5Je, - 2.5J0, + 1.5Jw + 1 . 5 J ~  - Kw - Ked 

(dr:e) - (**:e) lA2 (20s + €6 - 1 leg - 4~10)/6 At - 0.5Ju - 2.550, + 2.5Jw + 0 . 5 J ~  - KW + Ked - 2(8c'ld') 

a Where A€ refers to the separation of the corresponding MO energies; J and  K refer respectively to Coulomb and exchange integrals; 8 and e denote 
the two components of (dr:e), whereas 6" and e' refer to the two components of (r*:e), respectively. 

energies is given in Table 1. This table gives also the relation between 
thestateenergies and the corresponding Coulomband exchange integrals. 
The same result is also shown in a more pictorial fashion in Figure 2. In 
this latter representation the horizontal bars on the left-hand side of the 
figure represent the configurational barycenters, the bars in the middle 
represent the differences in Coulomb interaction between the different 
states, and finally the bars on the right-hand side show the result of 
exchange interaction. 

A comparison of these formulae with the treatment of the electrostatic 
interaction by Kober-Meyerlk and by Ferguson-Herren15b shows that 
in the two latter models the difference of the Coulomb integrals Ju - J a b  
is always neglected and that the exchange integrals K,b for the different 
excited configurations are approximated by one single averaged parameter 
KW. 

For the sake of completeness, the off-diagonal matrix elements (CI 
matrix) expressed in terms of electrostatic two-electron matrix elements, 
which are neither of Coulomb type nor of exchange type, are given in 
Tables 2a-d. 
2.3 Spiborbit Coupling. The inclusion of spin-orbit coupling in this 

calculation is important because of the large spin-orbit coupling constant 
of Ru (ca = lo00 cm-l),I5 Due to this interaction the electrostatic 
multiplets obtained so far are further split into spin-orbit components. 
Their classification according to the double group 4* yields: 

IA,  -A, 

'A1-,A2+E 

'A, - A, 

'A,+A, + E 

~ E - E  

'E- A, +- A, + 2E 
The calculation of the interaction matrix (J.,@Ohbj) is easily obtained 
from the multiplet wave function in eq 2 as 

fir 

The evaluation of these latter elements gives ( x k  refers to a spin-orbital) 

in case both determinants are equal, 

(4,ISOl4,) = (XclSOlX/) (9b) 

in case the two determinants differ in exactly one spin-orbital (Le. X k  and 
X I  refer to thcae spin-orbitals), and 

(4JSOI4,) = 0 (9c) 

Table 2. Off-Diagonal (2nd-Order Contribution) Electrostatic 
Matrix Elements 

(dr:al) - (r*:e) 
(dr:e) - (**:a,) 

(dr:e) - (**:e) 

(dr:al) - (r*:e) 
(dr:e) - (**:a,) 
(dr:e) - (r*:e) 

(dr:al) - (r*:a2) 
(dr:e) - (r*:e) 

(dr:al) - (r*:a2) 
(dr:e) - (r*:e) 

(a) Matrix Elements for 'E 
cf. Table 1 
2(ale'la28) + cf. Table 1 

2 2(6"ela16") - d2(a2a2lW) - cf. Table 1 
4 2  (6"6"lal@) (a26la2~) 

(dr:al) - (dr:e) - (dr:e) - 
(r*:e) (r*:az) (r*:e) 

ja2ff la l r  ) 

(b) Matrix Elements for 3E 
cf. Table 1 
(az6"lalc) cf. Table 1 
-d2(6"6"1a18) -(a4a26") cf. Table 1 
(dr:al) - (dr:e) - (dr:e) - 

(r*:e) (r*:az) (r*:e) 

(c) Matrix Elements for 'A2 
cf. Table 1 
2d2(6"elalaz) - cf. Table 1 

(dr:al) - (dr:e) - 
(a*:a,) (**:e) 

(d) Matrix Elements for 'A2 
cf. Table 1 
-d2(a26"blc) cf. Table 1 
(dr:al) - (dr:e) - 

(**:a,) (**:e) 

d2 (ab la l c )  

otherwise. Finally the one-electron spin-orbit coupling matrix elements 
(x&Olx,) are evaluated according to the method outlined in ref 27. The 
result of this calculation is presented in Table 3. In this table C, (y = 
e, 81, e') denotes the MO coefficient of the Ru 4d atomic orbital; e refers 
to dxe,  a1 to dr:al, and e' to **:e orbitals. 

A comparison of the formulae in Table 3 with the treatment of the 
spin-orbit coupling by Kober-Meyerl% and by Ferguson-Herren15bshows 
that in the two latter models the delocalization of the 4dr electrons into 
the r* orbitals of bpy is completely neglected. 

3. Results and Discussion 
T h e  MO diagram of [Ru(bpy)#+ is well-known from previous 

electronic structure  calculation^.^^^^ The  relevant molecular 
orbitals involved in the major photophysical and photochemical 
properties are well characterized. The  composition and energies 
of these MO's, for the present study, are given in Table 4. From 
inspection of this table it is seen that the two highest occupied 
molecular orbitals dr:e and dr:al have, as expected, predominant 
metal character. In fact they correspond to the tz8 subshell in 
Oh symmetry and are a antibonding. The first one with e 
symmetry is a combination of 4dr(Ru) with u orbitals of bpy 
that are antisymmetric (irreducible representation b2) upon 
rotation about the C2 axis of bpy. The second one has a1 symmetry 
and is a combination of 4dr(Ru) with r orbitals of bpy that are 
symmetric (irreducible representation a*) upon rotation about 



spin-orbit 
coupling 

a n*:a2 is omitted in this table, since spin-orbit coupling of this orbital vanishes with all the other orbitals of the basis set. 

Table 4. Composition and Energies of the Frontier MO's of 
[ R u ( ~ P Y ) ~ I ~ +  

composition' orbital energy (eV) 
87.8% r*4(b2) + 9.5% Ru(4d) a*:e -8.869 
93.4% r*4(b2) + 3.4% r*s(b2) + 1.2% r3(b2) **:a2 -9.038 
83.3% Ru(4d) + 8.5% rl(a2) + 3.4% r3(a2) dr:al -10.978 
72.7% Ru(4d) + 8.4% ra(b2) + 6.1% r*4(b2) + -1 1.303 dr:e 

3.4% r*g(b2) + 2.5% rz(b2) 

0 r i  and A*, refer to respectively an occupied and empty r-orbital of 
bpy; the symbols a2 and b2 denote the irreducible representation of these 
r-orbitals in CZ, symmetry. 

the C2 axis of bpy. On the other hand, the two lowest unoccupied 
molecular orbitals, s*:a2 and ?r*:e, are almost equivalent to a 
combination of the lowest s* orbital of the three bpy ligands. 
This latter one is antisymmetric (irreducible representation b2) 
upon rotation about the C2 axis of bpy. The LUMO with a2 
symmetry is purely a ligand type. The second unoccupied 
molecular orbital with e symmetry has also some metal character. 

After obtaining a self-consistent solution to the ground state, 
we turn to the calculation of the unrestricted excited configurations 
as described in section 2.1. The results of these calculations are 
displayed in Table 5 .  Inspection of this table shows that the 
single determinantal energies of the determinants needed for the 
calculation of all MLCT first-order state energies are  thus 
obtained. Using the expressions in Table 1 yields these energies 
as shown in Table 6 .  The results in this table do not yet include 
spin-oribit coupling. However, the comparison of these results 
with Figure 2 is interesting. I t  is thus possible to obtain numerical 
values for all exchange integrals and for some Coulomb integrals. 
The result of such a calculation is shown in Table 7. The values 
thus obtained are  quite reasonable. In particular it is seen that 
the exchange integral Kw between the first component of ds :e  
and the first component of **:e has by far the largest value. 

The final step in our calculation of the MLCT states of [Ru- 
(bpy)3]2+ is the calculation of their spin-orbit splitting. This is 
done by calculating the complete, 36 X 36, interaction matrix 
and by solving it; 36 is the total number of MLCT components. 
This interaction matrix is readily obtained according to the method 
outlined in section 2.3 and by adding the values obtained in Table 
6 to the diagonal. Thus, the electrostatic interaction acts in first 
order and the spin-orbit coupling in second order. The second- 
order electrostatic interaction (cf. Table 4) is neglected in the 
present calculation since we believe that  this latter interaction is 

Table 5. Determinantal Excitation Energies of [Ru(bpy)#+ 
AE: AE: 

restricted spin-unrestricted 
config - 'determinant" - excitation 

tyue of excitation' around state restricted config energy (eV) 
(dr:al)a - (r*:a2)a 2.705 -0.1906 2.515 ('€1) 

(dr:al)a - (r*:a2)8 2.705 -0.215' 2.490 (=ea) 
(dr:al)a - (r*:e-1)a 2.793 +0.046 2.839 (=e,) 
(dr:al)a - (r*:e-1)/3 2.793 +0.006 2.799 ('€11) 
(dr:e-1)a - (r*:a2)a 2.751 -0.060 2.691 (=es) 

-0.079 2.672 ( e 4  
+0.118 2.953 (=€lo) 

(da:e-1)a - (r*:a2)@ 2.751 
(dr:e-1)a - (r*:e-1)a 2.835 
(dr:e-1)a - (r*:e-l)@ 2.835 +0.091 2.876 (=€a) 
(dr:e-1)a - (r*:e-Z)a 2.835 +0.266 3.101 ( ~ € 5 )  
(dr:e-1) a - (r*:e-2),3 2.835 +0.233 3.068 ( 3 2 9 )  

e-1 and e-2 refer to the first and to the second component of the 
irreducible representation e, respectively; a and 8 denote the up and 
down spin component respectively. * If the SCF procedure for this 
unrestricted excited configuration is carried out until convergence is 
reached, &(converged) = 0.212, which differs unsignificantly from the 
reported value obtained after one SCF cycle. Same as above; AE(con- 
verged) = 0.231. 

Table 6. Energies of the MLCT States without Spin-Orbit 
Coupling 

state 

'A2 
'A2 
)E 
'E 
3A1 
3E 

energy 
( 103 cm-I) 

20.08 
20.49 
21.56 
21.86 
22.42 
22.58 

energy 
state (103 cm-I) 
IE 23.22 
3E 23.97 
'AI 24.32 
'E 24.56 

'A2 26.00 
3A2 25.52 

Table 7. Electrostatic Two-Electron Integrals 
two-electron two-electron 

integral' value (cm-1) integral" value (cm-1) 
Jw - Je( 1549 Kw 621.3 
Ka1a2 202 Ked 266.3 
Kale 322.5 ( ee+v ) 29.8 
Kea2 153.5 

a Cf. with Table 1 for the notation. 

a t  least 1 order of magnitudesmaller than the spin-orbit coupling. 
This statement is based on the fact that off-diagonal matrix 
elements corresponding to this interaction depend upon two- 
electron electrostatic integrals which are neither of Coulomb type 
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Tabk 8. Energies of the MLCT States Including Spin-Orbit Coupling 

predicted energy obsd energy"* 
composition' state (lo) cm-1) ( 103 cm-1) 

85% )Az(dr.l-. r*d) + 14% 3E(d.re - r*d) 
87% 3Az(d*.l- **a) + 7% 3E(dre - **a) 
77% 'AZ(d*,1- r*.z) + 22% 'E(d*, -C T*J)  
85% 3E(d*e - **e) + 14% 'A2(d*.l - **d) 
77% 'E(d*e - **a) + 22% 'Az(d*al+ **a) 
66% 3 E ( d ~ ~ + r * a )  + 21% 'E(d*e-**d) 

AI 
E 
Az 
AI 
Az 
E 
E 
Ai 
E 
E 
E 
AI 
E 
A2 
E 
E 
E 
AI  
A2 
AI 
E 
E 
AI 
A2 

a Only the major parent states arc reported. 

nor of exchange type, i.e. integrals which are comparable to the 
last integral in Table 7 ((8tJc19') = 29.8 cm-1). On the other 
hand the spin-orbit coupling constant for 4d(Ru) is 990 cm-1. 
Thus, the neglect of second-order electrostatic interaction is 
justified in this case. Solving the secular equation associated 
with the 36 X 36 spin-orbit matrix yields the results reported in 
Table 8. In this table we have gathered together themajor results 
of our calculation with the spectroscopic data obtained from single 
crystal polarization work29 and MCD.30 

Bearing in mind that this calculation does not include any 
adjustable parameter, the comparison of these results with 
unambiguously assigned transition energies from ref 29 shows an 
acceptable agreement. Beyond this overall agreement, the main 
interest for the title compound is the identification of the 
luminescent states. Inspection of Table 8 shows clearly that, 
according to this calculation, the lowest excited state is (dw:al) - (r*:aZ) 'Az which splits by second-order spin-orbit coupling 
into an AI and an E component, the former lying 19 cm-l below 
the latter one. Above the )A2 we find (dr:al) - (r*:az) 'A2 
(spin-orbit component: Az) which belongs to the same excitation 
(dw:al - **:az) and is separated from the lowest excited state 

(29) Felix, F.; Ferguson, J.; Gildel, H. U.; Ludi, A. J. Am. Chem. Soc. 1980, 

(30) Ferguson, J.; Krausz, E.; Vrbancich, J. Chem. Phys. krr. 1986, 131, 
102, 4096. 

463. 

19.877 
19.896 
20.213 
21.439 
21.513 
21.534 
21.838 
22.056 
22.103 
22.125 
22.399 
22.450 
22.566 
22.923 
23.201 
23.948 
24.000 
24.348 
24.354 
24.362 
24.766 
25.623 
25.663 
26.089 

18.47 
18.95 

20.45 

21.5 (strong) 

24.74 

25.60 

23.3 (strong) 

26.13 

by 356 cm-1. These three levels are clearly isolated from all the 
other excited states by roughly 1500 cm-l. We wish to emphasize 
once more that the figures given above are not accurate to 1 cm-1. 
Comparison between predicted and observed data clearly indicates 
this. Despite this fact, a qualitative interpretation of these results 
yields some useful indications which can be used as a basis for 
a refined model. 
4. Coacldoe 

The results obtained in this work demonstrate once more the 
good ability of DFT calculations to predict the energies of excited 
(MLCT) states with a reasonable accuracy of (1-2) X IO3 cm-1. 
This precision might not be enough to describe unambiguously 
the fine structure of the MLCT manifold of [Ru(bpy)3l2+. To 
solve this problem, a refined model is needed. Such a study, 
essentially based on a judicious parametrization of the electrostatic 
integrals in Table 1, is in progress. The results of this study will 
be published separately. 

A further extension useful to this work would be the calculation 
of experimental quantities like e.g. g-values of the excited states 
and transition strengths. The evaluation of these properties could 
easily be undertaken within the same methodological frame in 
the near future. 
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